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Abstract The modes of action of TxA2 antagonists and
COX-2 inhibitors were studied utilizing flexible ligand
docking with postdocking minimization and ab initio inter-
action energy calculations. The resulting increased under-
standing of their binding interactions led to the design of a
lead compound with chemical moieties that allowed effi-
cient binding to both the thromboxane receptor and the
COX-2 enzyme. This compound is derived from allicin, a
natural component of garlic, and is a good starting point for
the development of anti-inflammatory drugs with fewer side
effects or improved cardiovascular drugs.
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Introduction

Instances of mechanical stress, injury, trauma, and some
immunological responses induce the release of arachi-
donic acid (AA) from membrane phospholipids in our
body. AA triggers a number of transformations leading
to the synthesis of various prostaglandins and eventually
inflammation and pain at the site of action [1]. AA is first

metabolized to prostaglandin H (PGH2). This step is cat-
alyzed by PGH synthase, also known as cyclooxygenase.
Cyclooxygenase (COX) exists in two isoforms, COX 1
and COX 2, which perform similar enzymatic activities.
COX 1 is constitutively expressed in many tissues includ-
ing the GI tract, kidney, and platelets, whereas the expres-
sion of COX 2 is induced in response to inflammatory
stimuli [2]. Both catalyze the formation of various pros-
taglandins. COX 1 catalyzes the synthesis of “good”
prostaglandins involved in gastric cytoprotection and he-
mostatic integrity. COX 2 catalyzes the synthesis of “bad”
prostaglandins leading to inflammation and pain. Nonste-
roidal anti-inflammatory drugs (NSAIDs) block the pro-
duction of various prostaglandins by inhibiting both COX
1 and COX 2. Most of these drugs are associated with
well-known side effects at the gastrointestinal level and
sometimes also at the renal level [3]. The beneficial
effects of these drugs are a result of COX 2 inhibition,
and adverse side effects are due to the inhibition of COX
1. Second-generation NSAIDs were therefore developed
as selective inhibitors of COX 2. These drugs quickly
become popular due to their mild effects on the GI tract.
However, it was also realized that long-term usage of
second-generation NSAIDs leads to cardiovascular prob-
lems [4]. In this case, the production of prostaglandins
through COX 2 is selectively blocked, but the pathway
through COX 1 is still open, resulting in the production of
TxA2. This induces platelet aggregation, which in turn
leads to thromboembolism and cardiovascular problems.
To avoid these adverse effects of selective COX 2 inhibi-
tion, research efforts are underway to develop dual antag-
onism strategies [5, 6]. Figure 1 illustrates the production
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of prostaglandins, points of intervention in the cycle, and
the benefits of dual TP/COX inhibition.

In the study presented in this paper, we attempted the de
novo design of dual COX/TP antagonists. The binding
interactions of COX inhibitors with enzyme active-site res-
idues and the binding interactions of TP antagonists with
TPR binding-site residues were studied in detail. The result-
ing improved understanding of these binding interactions
allowed us to design a dual TP/COX antagonist by blending
pharmacophoric features of both antagonists.

Methodology

Ab initio quantum mechanical calculations with com-
plete geometry optimization [7, 8] performed at the
Hartree–Fock (HF) level and the DFTB3LYP level, uti-
lizing the 6-31G* basis set [9, 10], were performed.
Quantum mechanical calculations were coupled with
docking studies and drug–receptor interaction energy
calculations.

The following steps describe the procedure in detail.

Docking score = -4.055
Int. En = -72.4 kCal/mol
Ligand Entropy = 34.2 kCal/mol
Overall Int. En = -38.2 kCal/mol
BSSE = 16.33 kCal/mol

Docking score = -3.997
Int. En = -62.2 kCal/mol
Ligand Entropy = 34.6 kCal/mol
Overall Int. En = -27.6 kCal/mol
BSSE = 17.52 kCal/mol
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Ligand preparation

The geometries of selected TxA2 agonists, antagonists, and
COX-2 inhibitors were completely quantum-mechanically
optimized using ab initio molecular orbital calculations.
Experimental potency values were taken from [11–17]. Sev-
eral conformations of each were prepared and energetically
filtered for docking studies. A rough idea of possible bioac-
tive conformations of ligands can be obtained by viewing
the binding site of receptor and gauging the spatial con-
straints associated with it.

Receptor preparation

To prepare the model of the thromboxane receptor (TPR), the
latest coordinates for human TPR available in SWISS PROT
(entry P21731) [15–17] were obtained. This model lacks an
important transmembrane segment containing residues that
are involved in ligand binding. However, the complete model
containing the desired transmembrane segment is available for

the green monkey, so this model was taken to represent the
human TPR model, considering the similarities between pri-
mates and humans. For ab initio calculations of the ligand–
receptor interaction energies, 8 Å environment was taken
throughout the length of inhibitor. Binding site residues are
quite spread out in this case, and the inhibitors are very long,
making modeling quite challenging. Similarly, to prepare a
model of the COX-2 active site, the coordinates in the Broo-
khaven Protein Data Bank file 6COX [13, 14] were used. 8 Å
environment around active site has been taken. In both cases,
the ionizable residues were modeled in their respective ion-
ized forms.

Docking and drug–receptor interaction energy evaluation

The ligands were sequentially docked using the Glide flex-
ible ligand docking program [18–20] with postdocking min-
imization. The complete receptor was used in the automated
docking studies. A target grid was superposed on the bind-
ing site residues. One thousand poses were generated, and
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Fig. 4 Conformational mapping for the TPR agonist U44069
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the best ten were selected to evaluate drug–receptor interac-
tion energies using accurate supermolecule quantum me-
chanical calculations.

The interaction energies were calculated as:

Einteraction ¼ Ecomplex � Edrug þ Ereceptor

� �
: ð1Þ

Interaction energies were also corrected for basis set
superposition error (BSSE). The BSSE was evaluated for
all of the complexes, and all BSSE values were of a similar
order of magnitude. Hence, comparisons can be made and
inferences can be drawn.

Analysis and de novo design of a dual inhibitor

We used the ligand entropy changes and drug–receptor
interaction energies to analyze the docking results. The
analysis of drug–receptor interactions at COX and the TPR
led to the design of a dual TP/COX inhibitor.

Results and discussion

Generating antagonistic activity at the thromboxane receptor
(TPR) requires an understanding of the mode of action of
the natural substrate TxA2 at the TPR. Therefore, we gen-
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erated different conformations of TxA2. Conformational
mapping of these conformations, shown in Fig. 2, indicates
that TxA2 most probably occurs as an extended conforma-
tion. The TPR model used for ab initio interaction energy
calculations is shown in Fig. 2. TxA2 was first docked in the
TPR using the GLIDE module of Maestro [21]. The results
obtained from automated flexible ligand docking are shown
in Fig. 3. Two zoomed-in figures are provided to highlight
important interactions with various transmembranes of the
receptor. Hydrogen-bonding interactions with T298, R+295,
L291 of TM7; W182, Y178, F184, Y174 of elP2 as well as
F114 of TM3 and P167 of TM4 can be clearly seen. These
results are in accord with site-directed mutagenesis results,
showing the importance of these residues in binding the
ligand and activating the receptor [22–25].

Frames corresponding to the best docking scores were
selected for accurate interaction energy evaluation. The
change in the ligand conformational entropy required was
calculated in each case. The overall interaction energy indi-
cates the feasibility of receptor activation. Results from ab
initio intermolecular interaction energy calculations are also
shown in these figures. All of the poses highlight the im-
portance of strong electrostatic interactions between the
negative site on the ligand and R+295. Most of the poses
also show hydrogen-bonding interactions between hydrox-
yls on TxA2 and L291. Low docking score poses corre-
spond to cyclic conformations of TxA2, which are not well
suited to receptor activation. Next, we studied a well–known
TPR agonist, U44069. The structure and conformations of
this agonist are shown in Fig. 4. U44069 shows an equal
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probability of being cyclic or extended in conformation.
Both conformations were considered in docking studies.
The best docking results are shown in Fig. 5. Two poses
corresponding to the best docking scores obtained are pre-
sented in blow-ups, which show various interactions. It is
apparent that all interactions with TM7, TM3-4, and elP2
seen with the natural substrate TxA2 are maintained with
U44069. The agonist shows enhanced interactions (involv-
ing E−287) with elP2. The ligand conformational entropy is
lower than for the natural substrate, suggesting that the
agonist can act competitively.

To understand the difference between the mode of
action of the natural substrate and an antagonist, we
chose to study SQ34550, one of the many potent antag-
onists synthesized by Squibb pharmaceuticals [11]. The
antagonist is conformationally locked in the vicinity of
the negative site. A cyclohexyl ring at the end of the
alkyl chain also restricts the conformational freedom of
the compound, resulting in an extended conformation
(see Fig. 6). The best poses for SQ34550, along with
their docking scores and ab initio interaction energy
calculations, are shown in Fig. 7. An S-shaped confor-

Docking score -4.559
Int. En = -63.4kCal/mol
Ligand Entropy = 13.7kCal/mol
Overall Int. En = -49.7kCal/mol
BSSE = 17.60 kCal/mol

Docking score -4.434
Int. En = -67.3kCal/mol
Ligand Entropy = 12.4kCal/mol
Overall Int. En = -54.9kCal/mol
BSSE = 16.94 kCal/mol
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mation is best suited to the receptor’s constrained site,
at the expense of minor ligand conformational entropy.
The overall interaction energy with the receptor is com-
parable to that seen for the natural substrate TxA2. The
S-shaped conformation of the antagonist shows good
binding with the receptor, but it eliminates interactions
with TM3 and TM4, implying that these transmem-
branes are important for receptor activation. Many more
TxA2-derived antagonists were also studied. All of them
showed similar conformations and hence similar binding
modes. Conformational restriction ensures good binding
that utilizes electrostatic interactions with R+295, but
prohibited hydrogen-bonding interactions with F114
and P167. Hydrogen-bonding interactions with Y178/
L291 are weakened due to an absence of hydroxyl
groups on the prostanoid alkyl chain in most of the
antagonists. In other words, the interactions between
an antagonist and the receptor only allow the antagonist
to bind to the receptor, not to activate it.

After elucidating the mode of action of TPR antagonists,
cyclooxygenase 2 (COX 2) inhibitors were studied in order
to determine their mode of action. A potent inhibitor of
COX, SC558, was selected for this study; its chemical
structure and optimized conformations are shown in
Fig. 8a. COX inhibitors are not flexible enough to allow
many dockable conformations. Most of the inhibitors occur
in a compact V form. Similarities and differences between
the active sites of the TPR and COX are also shown in
Fig. 8b. Similar residues in similar positions, for example
R+295: R+513, R+173: R+120, and S201: S530, may allow
similar substrates to be accepted by both active sites [26].
Therefore, we docked a COX-specific potent drug, SC558,
in the active site of COX; the results are shown in Fig. 9.
The main binding interactions include the interaction of the
sulfonamide group on the drug with Q192 and H+90, the
interaction of the CF3 group with R+120, and the interaction
of the bromophenyl group with W387 and S530. All of the
poses show similar binding interactions, as the lack of
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flexibility of the compound does not permit it to fit into the
active site in various conformations. Mutagenesis results
[27, 28] and recent modeling studies [29] have also high-
lighted the importance of these residues. The overall inter-
action energy is quite low, as the drug is not in an ionized
form and there is no major contribution from electrostatic
interactions. The high docking score may be due to the
smaller size of the drug.

In order to design a dual inhibitor for TPR and COX,
we docked a COX-specific drug in the TPR-binding
site, as some sulfonamide derivatives have already been

shown to act as TPR antagonists [30, 31]. This docking
approach allowed us to identify the modifications that
must be made to SC558 to make it a good dual inhib-
itor. The docking results for SC558 are shown in Fig. 9.
This compound, being small in size, is not able to
engage with all of the residues needed to bind at the
TPR binding site. The main binding residue in the TPR,
R+295, is still available to interact with the natural
substrate. However, it does obstruct TxA2 from inter-
acting with L291, leading to some degree of antagonism
at the TPR. Perhaps this is why modern COXIBs are

Docking score = -8.068
Int. En = -23.5kCal/mol
Ligand Entropy = 15.6kCal/mol
Overall Int. En = -7.9kCal/mol
BSSE = 26.25kCal/mol
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known to show dual inhibition, leading to synergistic
effects.

However, it is important to design balanced dual
inhibitors to avoid side effects and to take complete
advantage of dual antagonism. Garlic is a well-known
herb that possesses many medicinal properties, including
antihypertensive and anti-inflammatory properties [32].
It has many constituents, one of which is allicin. We
used allicin as our starting point to derive a dual TPR/
COX inhibitor. Both of the active sites contain a posi-
tive site to anchor the substrate. Therefore, in the first
design step, a carboxylic group was introduced at one
end of allicin to enhance the binding with the receptor.
In the next step, a five-membered ring was introduced

at the other end to restrict movement and retain the
conformation best suited to docking with the TPR.
These design steps are shown in Fig. 10. The docking
of designed compound 2 in both receptors is shown in
Fig. 11. The change in ligand conformational entropy is
negligible for docking in the TPR, which indicates that
the designed compound is suitable for antagonizing
TPR. The results obtained when the designed compound
was docked in the active site of COX are also shown in
Fig. 11. The designed compound utilizes electrostatic
interactions with R+120 in COX-2 and R+ 295 in the
TPR . It avoids interactions with TM3 and 4 in the
TPR, suggesting antagonism. It also presents hydropho-
bic interactions between the five-membered ring and
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residues in the active site of COX. The sulfone linkage
is H-bonded to H+90. The designed compound is there-
fore optimized for dual inhibition due to its enhanced
electrostatic interactions with both the receptors. It
engages all of the important residues for binding in
the TPR (whereas COXIBs—which are also dual inhib-
itors—leave out R+295), making it available to throm-
boxane. The change in conformational entropy when
binding to both receptors is very small, facilitating
binding to both.

This designed compound is expected to be a good start-
ing point for the development of a balanced dual TPR/COX

inhibitor, and it has the added advantage of being a naturally
derived compound.

Concluding remarks

This study utilized a combination of automated flexible
ligand docking and ab initio interaction energy calculations
to study the modes of action for TxA2 antagonists and
COX-2 inhibitors. The binding interactions in both cases
were studied in detail at the microscopic level. The resulted
increased understanding of these binding interactions led to
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the design of a balanced dual inhibitor starting from a
natural compound. This compound will fully utilize syner-
gistic effects, and may lead to better anti-inflammatory
drugs or better drugs for cardiovascular diseases with fewer
side effects.
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